
UCRL-ID-137578 

Scientific Software 
Component Technology 

S. Kohn, D. Gannon, N. Dykman, G. Kumfet? and B. 
Smolinski 

U.S. Department of Energy 

February 16,200O 

Approved for public release; further dissemination unlimited 





DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 

Work performed under the auspices of the U. S. Department of Energy by the University of California 
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 

This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from the 
Office of Scientific and Technical Information 

P.O. Box 62, Oak Ridge, TN 37831 
Prices available from (423) 576-8401 

http://apollo.osti.gov/bridge/ 

Available to the public from the 
National Technical Information Service 

U.S. Department of Commerce 
5285 Port Royal Rd., 

Springfield, VA 22161 
http://www.ntis.gov/ 

OR 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http://www.llnl.gov/tid/Library.html 





Scientific Sofhrvare 
Component Technology 
Principal Investigator: Scott Kohn 

Center for Applied Scientific Computing 
Computations Directorate 

Technical Advisor: Dennis Gannon 

Co-Investigators: 

Indiana University and NASA Ames Research Center 

Nathan Dykman, Gary Kumfert and Brent Smolinski 
Center for Applied Scientific Computing 
Computations Directorate 

Funding Summary: FY99: $200K 

Scientific Software Component Technology 1 



Executive Summary 

We are developing new software component technology for high-performance parallel 
scientific computing to address issues of complexity, re-use, and interoperability for 
laboratory software. Component technology enables cross-project code re-use, reduces 
software development costs, and provides additional simulation capabilities for massively 
parallel laboratory application codes. The success of our approach will be measured by its 
impact on DOE mathematical and scientific software efforts. Thus, we are collaborating 
closely with library developers and application scientists in the Common Component 
Architecture forum, the Equation Solver Interface forum, and other DOE mathematical 
software groups to gather requirements, write and adopt a variety of design specifications, and 
develop demonstration projects to validate our approach. 

Numerical simulation is essential to the science mission at the laboratory. However, it is 
becoming increasingly difficult to manage the complexity of modern simulation software. 
Computational scientists develop complex, three-dimensional, massively parallel, full-physics 
simulations that require the integration of diverse software packages written by outside 
development teams. Currently, the integration of a new software package, such as a new 
linear solver library, can require several months of effort. 

Current industry component technologies such as CORBA, JavaBeans, and COM have all 
been used successfully in the business domain to reduce software development costs and 
increate software quality. However, these existing industry component infrastructures will 
not scale to support massively parallel applications in science and engineering. In particular, 
they do not address issues related to high-performance parallel computing on ASCI-class 
machines, such as fast in-process connections between components, language interoperability 
for scientific languages such as Fortran, parallel data redistribution between components, and 
massively parallel components. While industrial component systems do not directly address 
scientific computing issues, we leverage existing industry technologies and design concepts 
whenever possible. 

Since the mid-year start of this project in FY99, we have focused on the needs of seamless 
language interoperability in a high-performance environment. Computational scientists are 
routinely hindered in code re-use by differences in programming languages; for example, a 
solver library written in C++ can be difficult to call from an applications code written in C or 
Fortran. Our approach adopts the industry practice of using an Interface Definition Language 
(IDL) to describe component interfaces in a language-independent manner. We have 
developed an IDL for scientific applications (SIDL) that focuses on the unique needs of the 
scientific domain as compared to the business world. We have also created tools that use 
SIDL descriptions of software components to generate automatically language bindings and 
code that allows the component to be called easily from different languages. 

As a demonstration project, we worked with the HYPRE team at LLNL to develop Fortran 
bindings for their linear solver preconditioning library. Previously, HYPRE did not support a 
Fortran calling interface, so Fortran programmers did not have access to its advanced solver 
capabilities. In an afternoon, we were able to define SIDL interfaces for the HYPRE 
structured grid preconditioning routines and generate the appropriate Fortran calling interface. 
Performance measurements on the ASCI Blue Pacific platform demonstrate that the overhead 
of our approach is less than a percent of the overall run-time. 

In the following year, we will continue the development of our component interoperability 
tools and focus on the needs of communication between distributed components running in 
different processor spaces. We will also provide language support for Python, a popular 

Scientific Software Component Technology 2 



scripting language for scientific simulations at the laboratory, Finally, we will continue our 
collaborations with the Common Component Architecture and Equation Solver Interface 
forums to help deploy our software component technology across the DOE complex. 

Research Papers 

We have written refereed two papers describing our activities. These papers are attached to 
this final report. 

The first paper provides an overview of our activities with the Common Component 
Architecture forum to develop a component architecture for scientific computing. This paper 
was published in the High Performance Distributed Computing Conference in August of 
1999. The release number is UCRL-JC- 134475. 

Toward a Common Component Architecture for High Pelformance Scientific 
Computing, Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott 
Kohn, Lois Mcinnes, Steve Parker, and Brent Smolinski, High Performance 
Distributed Computing Conference, August 1999. 

Abstract: This paper describes work in progress to develop a standard for 
interoperability among high-performance scientific components. This research 
sterns from growing recognition that the scientific community needs to better 
manage the complexity of multidisciplinary simulations and better address scalable 
performance issues on parallel and distributed architectures. Driving forces are 
the need for fast connections among components that perform numerically 
intensive work and for parallel collective interactions among components that use 
multiple processes or threads. This paper focuses on the areas we believe are most 
crucial in this context, namely, an interface definition language that supports 
scientific abstractions for specifying component interfaces and a ports connection 
model for specifying component interactions. 

The second paper describes our LLNL language interoperability work in some detail. In 
particular, we demonstrate that our language interoperability approach can work for a 
scientific library running on an ASCI-class parallel computer. This paper was published in 
the International Symposium on Object-Oriented Parallel Environments in December of 1999. 
The release number is UCRL-JC- 134260. 

Language Interoperability for High-Performance Parallel Scientific Components, 
Brent Smolinski, Scott Kohn, Noah Elliott, and Nathan Dykman, International 
Symposium on Object-Oriented Parallel Environments (ISOPE), December 1999. 

Abstract: Component technologies offer a promising approach for managing the 
increasing complexity and interdisciplinary nature of high-performance scientific 
applications. Language interoperability provides the flexibility required by 
component architectures. In this paper, we present an approach to language 
interoperability for high-performance parallel components. Based on Interface 
Definition Language (IDL) techniques, we have developed a Scientific IDL 
(SIDL) that focuses on the abstractions and performance requirements of the 
scientific domain. We have developed a SIDL compiler and the associated run- 
time support for reference counting, reflection, object management, and basic 
exception handling. The SIDL approach has been validated for a scientific linear 
solver library. Initial timing results indicate that the performance overhead is 
minimal (less than 1%) whereas the savings in development time for interoperable 
software libraries can be substantial. 

Scientific Component Technology Initiative 3 





Toward a Common Component Architecture for High-Performance 
Scientific Computing * 

Rob Armstrong+ Dennis Gannod Al Geistg Katarzyna Keahey” Scott Kohnil 

Lois McInnes** Steve Parker++ Brent Smolinskitt 

Abstract 

This paper describes work in progress to develop a stan- 
dard for interoperability among high-perjiormance scien- 
tific components. This research stems from growing recog- 
nition that the scient@c community needs to better man- 
age the complexity of multidisciplinary simulations and bet- 
ter address scalable peflormance issues on parallel and 
distributed architectures. Driving forces are the need for 
fast connections among components that perjorm numeri- 
cally intensive work and for parallel collective interactions 
among components that use multiple processes or threads. 
This paper focuses on the areas we believe are most crLl- 
cial in this context, namely, an integace definition language 
that supports scientific abstructions for specifying compo- 
nent interfaces and a ports connection model for specifying 
component interactions. 

1 Introduction 

The complexity and resource demands of present-day 
software systems create the need for more flexible so- 
lutions than those offered by conventional programming 

*This work has been partially supported by the MICS Division 
of the U.S. Department of Energy through the DOE2000 Initiative. 
For further information on the Common Component Architecture Fo- 
rum, see http://www.acl.lanl.gov/cca-forum or write to 
cca-forum@z.ca.sandia.gov. 

tSandia National Laboratories, rob@2 . ca. sandia. gov. 
tIndiana University, gannonecs. indiana.edu 
IOak Ridge National Laboratory, geist@msr . epm. ornl . gov. 
(Advanced Computing Laboratory, Los Alamos National Laboratory, 

kate@lanl.gov. 
11 Center for Applied Scientific Computing, Lawrence Livermore Na- 

tional Laboratory, skohn@llnl.gov. 
**Mathematics and Computer Science Division, Argonne National Lab- 

oratory, mcinnes@mcs.anl.gov. 
t+Department of Computer Science, University of Utah, 

sparker@taz.cs.utah.edu. 
$fCenter for Applied Scientific Computing, Lawrence Livermore Na- 

tionalLaboratory, smolinskil@llnl.gov. 

styles based on a succession of subroutine calls. One so- 
lution is component programming, based on encapsulat- 
ing units of functionality and providing a meta-language 
specification of their interfaces. Component-based soft- 
ware development can be considered an evolutionary step 
beyond object-oriented design. Object-oriented techniques 
have been very successful in managing the complexity of 
modern software, but they have not resulted in signifi- 
cant amounts of cross-project code reuse. Sharing object- 
oriented code is difficult because of language incompati- 
bilities, the lack of standardization for inter-object commu- 
nication, and the need for compile-time coupling of inter- 
faces. Component-based software development addresses 
issues of language independence-seamlessly combining 
components written in different programming languages- 
and component frameworks define standards for communi- 
cation among components. 

These advantages are especially appealing in high- 
performance scientific computing, where high-fidelity, 
multi-physics simulations are increasingly complex and of- 
ten require the combined expertise of multidisciplinary re- 
search teams working in areas such as mathematical mod- 
eling, adaptive mesh manipulations, numerical linear and 
nonlinear algebra, optimization, load balancing, computa- 
tional steering, parallel I/O, sensitivity analysis, visualiza- 
tion, and data analysis. Consequently, the interoperabil- 
ity and rapid application development afforded by com- 
ponent programming are of particular importance, as they 
help to support incremental shifts in parallel algorithms 
and programming paradigms that inevitably occur during 
the lifetimes of scientific application codes. In addition, 
since components can be configured to execute in remote 
locations, component programming can offer high-level ab- 
stractions that facilitate the use of distributed supercomput- 
ing resources, which have been shown to offer powerful po- 
tential [21]. 

Many differing opinions about component definitions 
exist within the software community [7, 471. We present 
some working definitions as preliminaries for further dis- 
cussion. 



l A component is an independent unit of software de- 
ployment. It satisfies a set of behavior rules and im- 
plements standard component interfaces that allow it 
to be composed with other components. These behav- 
ior rules are often specified as design patterns that must 
be followed when writing the component. 

l A component integration framework is an implemen- 
tation of a set of interfaces and rules of interaction that 
govern the communication among components. 

l A component architecture is a specification of a set 
of interfaces and rules of interaction that govern the 
communication among components and other neces- 
sary tools, such as repositories and composition tools. 

We have recently established the Common Component 
Architecture (CCA) Forum 11.51, a group whose current 
membership is drawn from various Department of En- 
ergy national laboratories and collaborating academic in- 
stitutions. The goal of the CCA Forum is to specify 
a component architecture for high-performance comput- 
ing, where our target architectures include workstation 
networks, distributed-memory multiprocessors, clusters of 
symmetric multiprocessors, and remote resources. We hope 
that this work will lay a foundation for the definition of stan- 
dardized sets of domain-specific component interfaces and 
for the interoperability among toolkits developed by dif- 
ferent teams across different institutions. The purpose of 
this paper is to discuss the current CCA specification and to 
present progress of the group to date. 

The software industry has defined component standards 
such as CORBA [40], COM [45], and JavaBeans [19] to 
address similar complexities within their target applications 
(see Section 3 for a detailed discussion). Our approach 
leverages this work where appropriate, but addresses the 
distinctly different technical challenges of large-scale sci- 
entific simulations. Based on the lessons learned from re- 
search projects in high-performance component architec- 
tures by CCA participants (see, e.g., [3,44,25,32,36,37]) 
and projects considering related design issues (see, e.g., 
[ 1,23,26,6]), we are developing a single component inter- 
face specification that will enable interactions among sci- 
entific components that follow this standard. Additional re- 
lated work [ 10, 8,22, 351 can be found elsewhere. 

We recognize two levels of interoperability: component- 
level interoperability, for which all the vital functions of 
any one architecture are accessible to any compliant com- 
ponent through a standard interface (e.g., facilities avail- 
able within a CORBA ORB), and framework-level interop- 
erability, for which the frameworks themselves interoperate 
through a standardized interface (e.g., inter-ORB communi- 
cation via CORBA IIOP). Providing component-level inter- 
operability requires defining an interaction model common 

to all components and a small set of indispensable high- 
level framework services. In addition to these requirements, 
framework-level interoperability necessitates the standard- 
ization of a number of low-level services. Since defining a 
standard for interoperability at the framework level requires 
a superset of features needed for the component level, our 
focus is on providing the latter now and extending it in the 
future to include framework-level interoperability features. 
The scope of this paper is limited to component-level inter- 
operability. 

The remainder of this paper motivates and explains our 
approach, beginning in Section 2 with a discussion of some 
of the challenges in large-scale scientific computing. Sec- 
tion 3 compares our strategy with related work in the soft- 
ware industry. Section 4 presents a high-level view of the 
CCA standard and provides a roadmap outlining the rela- 
tionships among its constituents. Sections 5 and 6 describe 
in detail the parts of the CCA standard that are most crucial 
for defining component interactions in high-performance 
scientific software, namely, a scientific interface definition 
language and a “ports” component linking and composition 
model with direct-connect and collective capabilities. Fi- 
nally, Section 7 outlines future directions of work. 

2 Motivating Examples 

Our work is motivated by collaborations with various 
computational science research teams, who are investigat- 
ing areas such as combustion 1141, microtomography [48], 
particle beam dynamics 1301, mold filling [3 I], and plasma 
simulation [43]. In conjunction with theoretical and ex- 
perimental research, these simulations are playing increas- 
ingly important roles in overall scientific advances, partic- 
ularly in fields where experiments are prohibitively expen- 
sive, time consuming, or in some cases impossible. While 
each of these simulations requires different mathematical 
models, numerical methods, and data analysis techniques, 
they could all benefit from infrastructure that is more flexi- 
ble and extensible and therefore better able to manage com- 
plexity and change. 

To enable a more concrete discussion of the CCA ap- 
proach, we briefly review some challenges arising in chem- 
ically reacting flow simulations, which have demanding re- 
quirements for high resolution and complex physical sub- 
models for turbulence, chemistry, and multiphase flows. 
Section 2.1 presents current functionality of a particular 
application, while Section 2.2 describes potential enhance- 
ments that component-based technology could help to sup- 
port. 

2 



2.1 Computational Hydrodynamics Example 

We consider the CHAD (Computational Hydrodynamics 
for Advanced Design) application [14, 421 because it ex- 
hibits computational requirements common within many of 
high-performance scientific codes. CHAD has been devel- 
oped for fluids simulations in the automotive industry under 
the Supercomputing Automotive Applications Partnership 
with the United States Council for Automotive Research 
and five Department of Energy national laboratories (Ar- 
gonne, Lawrence Livermore, Los Alamos, Oak Ridge, and 
Sandia). CHAD is the successor of KIVA [2], which has 
become a standard tool for device-level modeling of inter- 
nal combustion engines. CHAD is intended for automotive 
design applications such as combustion, interior airflow, 
under-hood cooling, and exterior flows. Currently, CHAD 
solves the single-phase, compressible Navier-Stokes equa- 
tions using an arbitrary Lagrangian-Eulerian formulation 
with hybrid unstructured meshes and a finite volume dis- 
cretization scheme. The application was designed from its 
inception as parallel code using Fortran 9 0 and encap- 
sulation of nonlocal communication in gather/scatter rou- 
tines using the Message Passing Interface (MPI) standard 
[391. 

2.2 Component Challenges and Opportunities 

CHAD researchers are experimenting with numerical 
strategies ranging from explicit through semi-implicit and 
even more fully implicit schemes using Newton-type meth- 
ods. Using semi-implicit and implicit techniques helps to 
overcome stability and accuracy restrictions on computa- 
tional timesteps, and thereby can often help to reduce over- 
all time to solution. 

Figure 1 demonstrates some typical interactions among 
components for a semi-implicit solution procedure within 
a PDE-based simulation. While a single diagram cannot 
express the richness of interactions within CHAD, nor the 
range of functionality needed by our motivating applica- 
tions, this picture does convey key themes that motivate the 
CCA approach. We focus on (1) fast interactions between 
components via a “ports” component linking and composi- 
tion model that allows direct connections (see Section 6.2), 
and (2) collective interactions among components that use 
multiple processes or threads (see Section 6.3). Collective 
abstractions are important for communication between both 
tightly coupled and loosely coupled components. For ex- 
ample, Figure 1 demonstrates collective directly connected 
ports between parallel preconditioner and Krylov solver 
components. The diagram also shows collective distributed 
port communication between numerical components of a 
parallel application and remote visualization tools. 

3 

Collective 
directly connected 
ports ixsm 

a 

/ MPI MPI MPI 
\ 

Parallel application 
/ 

Figure 1. Diagram of component interactions. 
Parailel numerical components that use distributed data structures 

and require interconnections with low latency and high bandwidth 

are represented in the upper portion of the figure. Components for 
visualization, which can often be more loosely coupled and dif- 

ferently distributed than the numerical components, are shown in 

the figure’s lower portion. Communication within a parallel com- 

ponent is at the discretion of the component itself. For example, 
in this diagram component A (a mesh) uses MPI to communicate 

among the four processes over which it is distributed, while compo- 

nent E (a visualization tool) uses shared memory. Communication 

between components is handled by ports. 

The goals of the CCA Forum are to simplify the infusion 
of new techniques within the lifetimes of existing applica- 
tions such as CHAD and to facilitate the construction of new 
models. Interactions among multiple tools that use current- 
generation infrastructure typically require labor-intensive 
translations between interfaces and data structures. We aim 
to simplify this process and also to enable dynamic interac- 
tions, since researchers may wish to introduce new compo- 
nents during the course of ongoing simulations. For exam- 
ple, a researcher may wish to visualize flow fields on a local 
workstation by dynamically attaching a visualization tool to 
an ongoing simulation that is running on a remote parallel 
machine. Upon observing that the flow fields are not con- 
verging as expected, the researcher may wish to introduce a 
new scheme for hierarchical mesh refinement. 

One of the most computationally intensive phases within 
the semi-implicit and implicit strategies under consideration 
within CHAD is the solution of discretized linear systems of 
the form Az = b, which are very large and have sparse co- 
efficient matrices A. The Equation Solver Interface (ESI) 
Forum [20] is defining collections of abstract interfaces for 
solving such systems, with a goal of enabling applications 
like CHAD to experiment more easily with multiple solu- 
tion strategies and to upgrade as new algorithms with bet- 
ter latency tolerance or more efficient cache utilization are 
discovered and encapsulated within toolkits. This area is 



one of many (e.g., partitioning, mesh management, dis- 
cretization, optimization, visualization) that could benefit 
from component-based infrastructure to facilitate experi- 
ments among different tools. 

3 Relationship to Existing Standards 

Component architecture standards such as CORBA [40], 
COM [45], and JavaBeans [191 have been defined by in- 
dustrial corporations and consortia and are employed by 
millions of users. Unfortunately, these standards do not 
address the needs of high-performance scientific comput- 
ing, primarily because they do not support efficient paral- 
lel communication channels between components. Abstrac- 
tions suitable for high-performance computing are needed. 
The existence of many successful high-performance lan- 
guages and libraries-such as HPC++ [24], POOMA [4], 
ISIS++ [12], SAMRAI [29], and PETSc [5]-testifies that 
such abstractions can enable the user to develop more effi- 
cient programs faster. Similarly, we need abstractions that 
capture high-performance concepts in component architec- 
tures. For example, PARDIS [37] and PAWS [6] success- 
fully show that introducing abstractions for single program 
multiple data (SPMD) computation can enable more effi- 
cient interactions between SPMD programs. In this section, 
we briefly review these industry standards and explain their 
limitations for high-performance scientific computing. 

3.1 Microsoft COM and ActiveX 

COM (Component Object Model) is Microsoft’s com- 
ponent standard that forms the basis for interoperability 
among all Window-based applications. ActiveX [ 1 I] de- 
fines standard COM interfaces for compound documents. 
Microsoft has developed a distributed version of COM, 
called DCOM, that targets networked Windows worksta- 
tions. 

COM targets business objects and does not include ab- 
stractions for parallel data layout or basic scientific com- 
puting data types, such as complex numbers and Fortran- 
style dynamic multidimensional arrays. Also, COM does 
not easily support implementation inheritance and multiple 
inheritance (which can be implemented through aggrega- 
tion or containment). Some scientific libraries (see, e.g., 
[20]) require multiple inheritance and a simple model for 
polymorphism, which COM does not provide. 

3.2 Sun JavaBeans and Enterprise JavaBeans 

JavaBeans and Enterprise JavaBeans (EJB) are compo- 
nent architectures developed by Sun and its partners. They 
are based on Sun’s Java programming language and are 
cross-platform competitors to Microsoft’s COM. 

Neither JavaBeans nor EJB directly addresses the issue 
of language interoperability, and therefore neither is ap- 
propriate for the scientific computing environment. Both 
JavaBeans and EJB assume that all components are writ- 
ten in the Java language. Although the Java Native In- 
terface [34] library supports interoperability with C and 
C++, using the Java virtual machine to mediate communi- 
cation between components would incur an intolerable per- 
formance penalty on every intercomponent function call. 

3.3 OMG CORBA 

CORBA is a distributed object specification supported 
by the OMG (Object Management Group), a consortium 
of over eight hundred partners. CORBA supports the in- 
teraction of complex objects written in different languages 
distributed across a network of computers running different 
operating systems. 

The current CORBA specification does not define a com- 
ponent model, although a CORBA 3.0 component speci- 
fication [41] is currently under review by the OMG. Like 
COM, CORBA does not provide abstractions necessary for 
high-performance scientific computing, such as Fortran- 
style dynamic multi-dimensional arrays and complex num- 
bers. Although CORBA enables robust and efhcient im- 
plementations for distributed applications, it is far too in- 
efficient when a method call is made within the same ad- 
dress space. While a recently established high-performance 
CORBA working group [28] may eventually address a sub- 
set of our performance concerns, their mandate does not ad- 
dress the range of parallel computing issues, as discussed 
in Section 2. CORBA also has a limited object model in 
that method overriding is not supported and the semantics 
of multiple implementation inheritance can lead to ambigu- 
ities. 

While CORBA 2.0 does not provide for a component in- 
teraction mechanism, the CCA specification does. It should 
be observed that the CORBA object model is sufficiently 
powerful to suppport an implementation of the CCA. This 
is a good example of the intent of the CCA specification: 
a layer on top of an existing system that enables high- 
performance computing. Such a “CCA over CORBA” im- 
plementation, targeting distributed environments, is being 
planned by one of the participating forum members. 

4 Overview of the CCA Standard 

We define the Common Component Architecture as a set 
of specifications and their relationships as depicted in Fig- 
ure 2. The elements with gray background pertain to spe- 
cific implementations of a component architecture, while 
the elements with white background depict parts of the CCA 
standards necessary for component-level interoperability. 

4 



As shown in the picture, components interact with 
each other and with a specific framework implementa- 
tion through standard application programming interfaces 
(APIs). Each component can define its inputs and outputs 
by using a scientific intetjke definition language (SIDL); 
these definitions can be deposited in and retrieved from 
a repository by using a CCA Repository API. The repos- 
itory API defines the functionality necessary to search a 
framework repository for components as well as to ma- 
nipulate components within the repository. In addition, 
these component definitions can serve as input to a proxy 
generator that generates component stubs, which form the 
component-specific part of the CCA Ports. Components can 
use framework services directly through the CCA Services 
interface. The CCA ConJiguration API supports interac- 
tion between components and various builders for functions 
such as notifying components that they have been added to 
a scenario and deleted from it, redirecting interactions be- 
tween components, or notifying a builder of a component 
failure. 

A component framework is said to be CCA compliant 
if it conforms to these standards-that is, provides the re- 
quired CCA services and implements the required CCA 
interfaces. Different components require different sets of 
services to interoperate. For example, some will require 
remote communication while others communicate only in 
the same address space. Therefore, the CCA standard 
will allow different flavors of compliance; each component 
will specify a minimum flavor of compliance required of a 
framework within which it can interact. 

I Scientlflc IDL 

0 CCA Ports m Part of CCA Ports specific to the framework 

Repository API @j Abstract Configuration API 

Figure 2. Relationships among CCAelements. 

We will now describe in some detail three elements of 
the CCA standard that we believe are most critical for high- 
performance scientific computing, namely, a scientific in- 
terface definition language, a ports model, and a minimal 

set of supporting services. Work on the other parts of the 
CCA standard is also in progress, but details are beyond the 
scope of this paper. 

l SIDL is a programming-language-neutral interface 
definition language used to describe component inter- 
faces. The SIDL provides a method for describing 
component and framework interfaces that is indepen- 
dent of the underlying implementation programming 
languages. Component descriptions using SIDL can 
be used by repositories and by a proxy generator to 
provide the component stubs element of communica- 
tion ports. 

l CCA Ports define the communication model for all 
component interactions. Each component defines 
one or more ports to describe the calling interface. 
Communication links between components are imple- 
mented by connecting compatible ports, where port 
compatibility is defined as object-oriented type com- 
patibility of the port interfaces, as can be described in 
the SIDL. As shown in Figure 2, each port has two 
parts. The first part is a set of framework-specific 
but component-independent functionality pertaining to 
component interaction (e.g., adding a listener to an 
object) and has the same API for every component. 
The second part implements component-specific but 
framework-independent functionality; this part can be 
generated automatically by a proxy generator based on 
the component definition expressed in SIDL, and is re- 
ferred to as a component stub. For example, a compo- 
nent stub may contain marshaling functions in a dis- 
tributed environment. 

l CCA Services present a framework abstraction that can 
be used in the component stub implementation as well 
as by the components themselves; this CCA element 
provides a clear definition of the minimal services a 
framework must implement in order to be CCA com- 
pliant. Two critical concerns guiding this design are 
that the services enable high-performance interactions 
and that the services are sufficiently compact and user 
friendly to enable a rapid learning process for compo- 
nent writers, many of whom will not be computer sci- 
entists. As such, we have identified that the key CCA 
services are creation of CCA Ports and access to CCA 
Ports, which in turn enable connections between com- 
ponents. 

Additional common facilities to handle naming, relation- 
ship management, error handling, querying, and so forth are 
of course also important, because in practice many compo- 
nents would need and could share these facilities. However, 
because the particular needs of different components and 

5 



frameworks vary considerably depending on usage environ- 
ment, discussion of these issues is beyond the scope of this 
paper. 

The following sections describe these features in more 
detail. A reference implementation is tracking the evolution 
of the Common Component Architecture. Likewise, several 
ongoing computational science projects are experimenting 
with the CCA to manage interoperability among compo- 
nents developed by different research groups; these expe- 
riences will motivate further extensions and refinements to 
design. 

5 The Scientific IDL 

The Scientific Interface Definition Language is a high- 
level description language used to specify the calling inter- 
faces of software components and framework APIs in the 
component architecture. SIDL provides language interoper- 
ability that hides language dependencies to simplify the in- 
teroperability of components written in different program- 
ming languages. With the proliferation of languages used 
for numerical simulation-such as C, C++ , Fortran 7 7, 
Fortran 90, Java, and Python-the lack of seamless 
language interoperability can be a significant barrier to de- 
veloping reusable scientific components. 

For the purposes of our high-performance scientific com- 
ponent architecture, SIDL must be sufficiently expressive 
to represent the abstractions and data types common in sci- 
entific computing, such as dynamically dimensioned mul- 
tidimensional arrays and complex numbers. Unfortunately, 
no such IDL currently exists, since most IDLs have been 
designed for operating systems [ 17, 181 or for distributed 
client-server computing in the business domain [33,40,46]. 

The basic design of our scientific IDL borrows many 
concepts from current standards, such as the CORBA 
IDL [40] and the Java programming language [27]. This 
approach allows us to leverage existing IDL technology and 
language mappings. For example, CORBA already defines 
language mappings to C, C++, and Java, and ILU [33] 
(which supports the CORBA IDL) defines language map- 
pings to Python. 

The scientific IDL provides additional capabilities nec- 
essary for scientific computing [ 13, 381. It supports object- 
oriented semantics with an inheritance model similar to that 
of Java with multiple interface inheritance and single im- 
plementation inheritance. IDL support for multiple inher- 
itance with method overriding is essential for scientific li- 
braries that exploit polymorphism through multiple inher- 
itance, such as used in the Equation Solver Interface [20] 
standard. The IDL and associated run-time system provide 
facilities for cross-language error reporting. We have also 
added IDL primitive data types for complex numbers and 
multidimensional arrays for expressibility and efficiency 

when mapping to implementation languages. 
We are developing SIDL support for reflection and dy- 

namic method invocation, which are important capabili- 
ties for a component architecture. Interface information 
for dynamically loaded components is often unavailable at 
compile time; thus, components and the associated com- 
position tools and frameworks must discover, query, and 
execute methods at run time. The SIDL reflection and 
dynamic method invocation mechanisms are based on the 
design of the Java library classes in j ava. lang and 
j ava . lang . reflect. Reflection information for every 
interface and class will be generated automatically by the 
SIDL compiler based on IDL descriptions. 

Our SIDL implementation currently supports language 
mappings for both c and Fortran 77, and support for 
C++ is under development. The Fortran 77 language 
mapping is similar to the C language mapping defined 
by CORBA except that SIDL interfaces and classes are 
mapped to Fortran integers instead of opaque data types. 
The SIDL run-time environment automatically manages the 
translation between the Fortran integer representation 
and the actual object reference. The Fortran 90 lan- 
guage mapping is still under development. Fortran 90 
is a particular challenge for scientific language interoper- 
ability, because Fortran 9 0 calling conventions and ar- 
ray descriptors vary widely from compiler to compiler. 

6 Component Interaction through Ports 

Every component architecture is characterized by the 
way in which components are composed together into ap- 
plications. As introduced in Section 4, CCA Ports are 
communication end points that define the connection model 
for component interactions. Within Figure 1, ports define 
the interactions between relatively tightly coupled parallel 
numerical components, which typically require very fast 
communication for scalable performance; ports also define 
loosely coupled interactions with possibly remote compo- 
nents that monitor, analyze, and visualize data. 

To address this range of requirements, we adopt a pro- 
vides/uses interface exchange mechanism, similar to that 
within the CORBA 3.0 proposal [41]. This approach en- 
ables connections that do not impede inter-component per- 
formance, yet allows a framework to create distributed con- 
nections when desired. In the ideal case, an attached com- 
ponent would react as quickly as an inline function call. 
We refer to this situation as direct connection, which is 
further discussed in Section 6.2. This type of connection 
makes the most sense when the component instances ex- 
ist in the same address space. Loosely coupled distributed 
connections should be available through the very same in- 
terface as the tightly coupled direct connections, without 
the components being aware of the connection type. This 

6 



need arises because high-performance components will of- 
ten be parallel programs themselves. A parallel component 
may reside inside a single multiprocessor or it may be dis- 
tributed across many different hosts. Existing component 
models have no concept of attaching two parallel compo- 
nents together, and existing research systems, such as CU- 
MULVS [26], PAWS [6], and PARDIS [37], approach this 
problem in different ways. We therefore introduce a collec- 
tive port model to enable interoperability between parallel 
components, as discussed in Section 6.3. 

In the JavaBeans model [19], components notify other 
listener components by generating events. Components that 
wish to be notified of events register themselves as listen- 
ers with the target components. Although there are some 
similarities to the CCA specification, JavaBeans does not 
allow a provides/uses design pattern as part of its standard. 
In the COM/DCOM model [45], one component calls the 
interface functions exported by another. The COM model 
is very similar in form to the CCA specification. Platform 
interoperability issues are, in the opinion of the CCA work- 
ing group, important enough that COM has not been not 
adopted outright. In the proposed CORBA 3.0 component 
model [41], both events and aprovideshses interface model 
are used. The provides/uses pattern employed by the CCA 
is very close to this proposed approach, and any component 
that is CCA compliant will likely map easily to CORBA 
3.0. However, at the time of this writing, CORBA 3.0 is 
a proposed standard that is still undergoing rapid change, 
and CORBA 3.0 may see no implementation for years. The 
CCA working group believes that a compatible standard 
for high-performance computing should appear much more 
quickly than the CORBA 3.0 time frame. For this reason 
we have chosen the provides/uses pattern for use as the 
CCA Ports architecture. It is expected (and hoped) that the 
CORBA 3.0 specification will not drift far from what is de- 
scribed here. 

6.1 The Basics of CCA Ports 

The concept of CCA Ports arises from the data-flow 
world, where component interactions are limited to pipelin- 
ing data from one component to the next. CCA Ports gener- 
alize this idea to admit method calls and return values along 
the pipeline, allowing for a richer variety of component in- 
teractions. Links between components are implemented by 
a provides/uses interface design pattern, which is flexible 
enough to allow direct component interface connections for 
high performance or connections through proxy intermedi- 
aries enabling distributed object interactions. Significantly, 
in the CCA model, port connection is the responsibility of 
the framework; therefore, a particular component may find 
itself connected in a variety of different ways depending on 
its environment and mode of use (see [9] for details of the 

7 

CCA ports specification and an applet demonstration). 
In the CCA architecture, components are linked together 

by connecting a “port” interface from one component to a 
“port” interface on another. As demonstrated in Figure 3, 
we employ two types of ports: 

l Provides port. A Provides port is an interface that a 
component provides to others. 

l Uses port. A Uses port interface has methods that one 
component (the caller) wants to call on another com- 
ponent (the callee); the caller component retrieves the 
Uses interface from the CCA Services handle. 

Component 1 ComponeotZj 

\ 
registerUsesPort(“A”) 

CCAServices 

CCAServices 

Figure 3. Illustration of the connection mech- 
anism. (1) The provided interface (i.e., ProvidesPort) 
is made known to Component I’s containing framework 

by (2) passing it to the CCAServices handle via the 

addProvidesPort ( ) method. (3) At the framework’s option, 
either the interface or a proxy for the interface can be given to Com- 

ponent 2 through its CCAServices handle. (4) Component 2 

retrieves the interface using the getport ( ) method. 

Provides ports are generalized listeners in the sense that 
they listen to Uses interfaces (i.e., calls of their functions 
by another component). Each Uses port maintains a list of 
listeners. To connect one component to another, one adds 
a Provides (input) port of one component to another’s Uses 
(output) port. This approach follows many features of the 
proposed CORBA 3.0 design. When a component calls a 
member function on one of its Uses ports, the same mem- 
ber function on each listening Provides port is called. Note 
that this means one call may correspond to zero or more 
invocations on provider components. 

As introduced in Section 4, all interaction between the 
component and its containing framework will occur through 
the component’s CCAServices object, which is set by 
the containing framework. The component creates and 
adds Provides ports to the CCAServices, and registers 



and retrieves Uses ports from the CCAServices. The 
CCAServices enables access to the list of Provides and 
Uses ports and to an individual port by its instance name. 
It also implements a method for obtaining the various ports 
and registering them with the framework. 

6.2 Direct-Connect Ports 

Much of the reason for adopting the provides/uses inter- 
face exchange mechanism for connecting CCA components 
is to enable high-performance computing. Except for the 
SIDL bindings to UsesPort and ProvidesPort inter- 
faces, the overhead for the privilege of becoming a CCA 
component is nothing more than a direct function call to the 
connected object. That is, there is no penalty for using the 
provides/uses component connection mechanism proposed 
in the CCA specification. The cost of the intervening SIDL 
binding for language independence is estimated to be ap- 
proximately 2-3 function calls per interface method call. 

Components can be directly connected in a variety of 
ways; probably the simplest is to create an object that ex- 
ports a DirectConnectPort interface subclassing both 
the UsesPort and ProvidesPort interfaces. This way 
the framework gets a Provides interface from one compo- 
nent and gives that same interface directly to a connect- 
ing component as a Uses interface. Note that with this 
approach the framework still retains full control over the 
connection between components. Optionally, the provided 
DirectConnectPort can be translated through a proxy 
by a separate Usesport provided by the framework, with- 
out the components on either end of the connection needing 
to know. 

6.3 Collective Ports 

The concept of Collective Ports is a small but pow- 
erful extension of the basic CCA Ports model to han- 
dle interactions among parallel components and thereby 
to free programmers from focusing on the often intricate 
implementation-level details of parallel computations. The 
provides/uses port interfaces and other port information are 
accessible from every thread or process in a parallel com- 
ponent. The CCA standard does not place any restrictions 
on the means by which particular implementations address 
this. For example, in a distributed-memory model a copy of 
these classes could be maintained by every process partic- 
ipating in computation, whereas in shared memory a class 
could be represented just once. However, the CCA standard 
does require that as one of the CCA services the implemen- 
tation maintain consistency among the classes. 

The creation of a collective port requires that the pro- 
grammer specify the mapping of data (or processes partici- 
pating) in the operations on this port. In the most common 

case the mappings of the input and output ports match each 
other. For example, n processes or threads in one compo- 
nent are mapped to n processes or threads in the other, and 
in this case data would not need redistribution between the 
parallel components. In the second most common case, a 
serial component interacts with a parallel component. The 
semantics of this interaction are very similar to broadcast, 
gather, and scatter semantics used in collective communica- 
tion. Collective ports are defined generally enough to allow 
data to be distributed arbitrarily in the connected compo- 
nents; as demonstrated in Figure 1, this capability is useful 
in connecting a parallel numerical simulation with differ- 
ently distributed visualization tools. We are investigating 
issues in the behavior of information how between collec- 
tive ports, especially in cases of mismatch in cardinality, 
time, and space. 

7 Future Directions 

This discussion has introduced the foundation for re- 
search by the CCA forum in defining a common com- 
ponent architecture that supports the needs of the high- 
performance scientific computing community and leverages 
existing component standards, but will likely not be ad- 
dressed by them. Key facets of this work are development 
of an IDL that supports scientific abstractions for compo- 
nent interface specification and definition of a ports con- 
nection model that supports collective interactions. This 
architecture enables connections that do not impede inter- 
component performance, yet allows a framework to create 
distributed connections when desired. Currently, we are im- 
plementing various Ports subclasses that relate directly to 
high-performance computing. Among these are the collec- 
tive ports discussed earlier, a component based on a numeric 
solvers standard [20], and a reference implementation of a 
CCA-compliant framework (see [ 151 for further informa- 
tion). Other proposals for components and standard inter- 
faces compliant with the current CCA Ports specification 
are openly solicited. 

Future plans include incorporating support for different 
computational models (e.g., SPMD and threaded models) 
and extending the definition of CCA Ports to accommo- 
date dynamic component hook-up and configuration. Some 
changes to the existing port specification are inevitable as 
we gain experience with actual high-performance compo- 
nents. Currently, the CCA specification makes no provision 
for framework services beyond Ports. At this moment a pro- 
posal is being crafted for gaining access through the existing 
CCA specification to services provided by existing frame- 
works, such as CORBA or Enterprise JavaBeans. It does 
not seem likely that the CCA working group will decide 
to require any of these services to be present. This is be- 
cause high-performance environments are often exotic, and 

8 



requiring services may limit some of the intended audience 
for this specification. 

Beyond these modifications and clarifications to the ex- 
isting standard, the CCA working group will function as 
a standards body, incorporating or rejecting proposed port 
and component additions to the essential core of the stan- 
dard. This phase of our activity has just begun, but is vital 
to the success of our mission. Our goal is to incorporate 
enough standard interfaces and components to make plug- 
and-play high-performance computing a reality. This is an 
impossibly tall order for the CCA members to accomplish 
by themselves. However, by incorporating components and 
interfaces from interested researchers and consortia, it is 
hoped that this vision can be realized. 

Acknowledgments 

The Common Component Architecture (CCA) Forum 
was initially inspired by the DOE2000 Initiative [ 161 and 
is motivated by ongoing collaborations with various scien- 
tific research groups. We especially thank Tom Canfield for 
conveying some of the challenges in device-scale combus- 
tion modeling, as discussed in Section 2. 

The CCA Forum comprises researchers from national 
laboratories within the Department of Energy and collab- 
orating academic institutions; current participants are Ar- 
gonne National Laboratory, Indiana University, Lawrence 
Berkeley National Laboratory, Lawrence Livermore Na- 
tional Laboratory, Los Alamos National Laboratory, Oak 
Ridge National Laboratory, Sandia National Laboratories, 
and the University of Utah. The ideas presented here 
were developed with the participation of various individ- 
uals at these institutions, including Ben Allan, Rob Arm- 
strong, Pete Beckman, Randall Bramley, Robert Clay, An- 
drew Cleary, Dennis Gannon, Al Geist, Paul Hovland, 
Bill Humphrey, Kate Keahey, Jim Kohl, Scott Kohn, Lois 
McInnes, Bill Mason, Carl Melius, Brent Milne, Noel 
Nachtigal, Steve Parker, Mary Pietrowicz, Barry Smith, 
Steve Smith, Brent Smolinski, Brian Toonen, and John Wu. 
These ideas have been influenced by laboratory and univer- 
sity software development teams, some of whose members 
are represented above. 

References 

[l] ALICE Web page. http://www.mcs.anl.gov/- 
alice, Mathematics and Computer Science Division, Ar- 
gonne National Laboratory. 

[2] A. A. Amsden, P. J. O’Rourke, and T. D. Butler. KIVA-II: A 
computer program for chemically reactive flows with sprays. 
Technical Report LA-I 1560-MS, Los Alamos National Lab- 
oratory, May 1989. 

[31 

[41 

151 

[61 

171 

181 

[91 

[lOI 

[I41 

u51 

[I61 

u71 

iI81 

1191 

R. C. Armstrong and A. Chung. POET (parallel object- 
oriented environment and toolkit) and frameworks for sci- 
entific distributed computing. In Hawaii International Con$ 
on System Sci., 1997. 
S. Atlas, S. Banerjee, J. Cummings, P. J. Hinker, M. Srikant, 
J. V. W. Reynders, and M. Tholburn. POOMA: A high- 
performance distributed simulation environment for scien- 
tific applications. In Supercomputing ‘95 Proceedings, De- 
cember 1995. 
S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. 
Efficient management of parallelism in object oriented nu- 
merical software libraries. In E. Arge, A. M. Bruaset, and 
H. P. Langtangen, editors, Modern Sofmare Tools in Scien- 
tific Computing, pages 163-202. Birkhauser Press, 1997. 
P. H. Beckman, P. K. Fasel, W. F. Humphrey, and S. M. 
Mniszewski. Efficient Coupling of Parallel Applications Us- 
ing PAWS. In Proceedings of the 7th IEEE lnternatiorzal 
Symposium on High Performance Distributed Computation, 
July 1998. 
M. Broy, A. Deimel, J. Henn, K. Koskimies, F. PlBSil, 
G. Pomberger, W. Pree, M. Stal, and C. Szyperski. What 
characterizes a (software) component? Software - Concepts 
and Tools, 19:49-56, 1998. 
H. Casanova, J. Dongarra, C. Johnson, and M. Miller. Ap- 
plication specific tools. chapter 7, in The Grid: Blueprint 
for a Future Computing Infrastructure, Morgan Kaufmann 
Publishers, 1999. 
CCAPorts Webpage. http://z.ca.sandia.gov/- 
“cca-forum/port-spec. 
K. M. Chandy, A. Rifkin, P. A. Sivilotti, J. Mandelson, 
M. Richardson, W. Tanaka, and L. Weisman. A world-wide 
distributed system using Java and the internet. In Proceed- 
ings of the Fifth IEEE International Symposium on High 
Performance Distributed Computing. IEEE Computer Soci- 
ety Press, August 1996. 
D. Chappell. Understanding ActiveX and OLE. Microsoft 
Press, 1997. 
R. L. Clay, K. Mish, and A. B. Williams. ISIS++ Web page. 
http://ca.sandia.gov/isis. 
A. Cleary, S. Kohn, S. Smith, and B. Smolinski. Language 
interoperability mechanisms for high-performance scientific 
computing. In Proceedings of the SIAM Workshop on 
Object-Oriented Methods for Inter-Operable Scient$c and 
Engineering Computing, October 1998. 
J. P. Collins, P. Colella, and H. M. Glaz. Implicit-explicit 
Eulerian Godunov scheme for compressible flows. J. Camp. 
Phys., 116:195-211, 199.5. 
Common Component Architecture Forum. See 
http://www.acl.lanl.gov/cca-forum. 
DOE2000 Initiative. See 
http://www.mcs.anl.gov/DOE2000. 
G. Eddon and H. Eddon. Inside Distributed COM. Microsoft 
Press, Redmond, WA, 1998. 
E. Eide, J. Lepreau, and J. L. Simister. Flexible and opti- 
mized IDL compilation for distributed applications. In Pro- 

ceedings of the Fourth Workshop on Languages, Compilers, 
and Run-time Systems for Scalable Computers, 1998. 
R. Englander. Developing Java Beans. O’Reilly, June 1997. 

9 



[201 

WI 

LQI 

~231 

~241 

P51 

P61 

~271 

WI 

r291 

[301 

[311 

~321 

t331 

t341 
[351 

Equation Solver Interface Forum. See http: //- 
z.ca.sandia.gov/esi/. 
I. Foster and C. Kesselman, editors. The Grid: Blueprint 
for a Future Computing Infrastructure. Morgan Kaufmann 
Publishers, 1999. 
G. Fox and W. Furmanski. Object-based approaches. chap- 
ter 10, in The Grid: Blueprint for a Future Computing In- 
frastructure, Morgan Kaufmann Publishers, 1999. 
L. A. Freitag, W. D. Gropp, P. D. Hovland, L. C. McInnes, 
and B. F. Smith. Infrastructure and interfaces for large-scale 
numerical software. In Proceedings of the 1999 lnterna- 
tional Conference on Parallel and Distributed Processing 
Techniques and Applications. to appear (also available as 
Argonne preprint ANLIMCS-P751-0599). 
D. Gannon, P. Beckman, E. Johnson, T. Green, and 
M. Levine. HPC++ and the HPC++Lib Toolkit. Languages, 
Compilation Techniques and Run Time Systems (Recent Ad- 
vances and Future Perspectives), to appear. 
D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasub- 
ramanian, E. Akman, F. Breg, S. Diwan, and M. Govin- 
daraju. Component architectures for distributed scientific 
problem solving. IEEE Computational Science and Engi- 
neering, 5(2):50-63, 1998. 
A. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Provid- 
ing Fault Tolerance, Visualization and Steering of Parallel 
Applications. The International Journal of Supercomputer 
Applications and High Performance Computing, (11):224- 
235, 1997. 
J. Gosling, B. Joy, and G. Steele. The Java Language Spec- 
ification, 1996. Available at http : / / j ava . sun _ corn. 
High-performance CORBA Working Group, See 
http://www.omg.org/homepages/realtime/ 
working.groups/highperformanceWcorba.html 
R. Hornung and S. Kohn. The use of object- 
oriented design patterns in the SAMRAI structured AMR 
framework. In Proceedings of the SIAM Workshop 
on Object-Oriented Methods for Inter-Operable Scien- 
tific and Engineering Computing, October 1998. See 
http://www.llnl.gov/CASC/SAMRAI. 
W. Humphrey, R. Ryne, J. Cummings, T. Cleiand, S. Habib, 
G. Mark, and J. Qiang. Particle beam dynamics simulations 
using the POOMA framework. In Proceedings of the IS- 
COPE ‘98 Conference, 1998. 
F. Illinca, J.-F. Hetu, and R. Bramley. Simulation of 
3-D mold-filling and solidification processes on distributed 
memory parallel architectures. In Proceedings of Inter- 
national Mechanical Engineering Congress & Exposition, 
1997. 
InDEPS Web page. http://z.ca.sandia.gov/- 
"indeps/, Sandia National Laboratories. 
B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi. ILU Ref- 
erence Manual. Xerox Corporation, Nov. 1997. Available at 
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html, 
JavaSoft. Java Native Inte$ace Specification, May 1997. 
A. Joshi, T. Drashansky, J. R. Rice, S. Weerawarana, and 
E. Houstis. Multiagent simulation of complex heteroge- 
neous models in scientific computing. Math. Comput. 
Simul., 44:43-59, 1997. 

10 

[361 

1373 

[381 

[391 

[401 

[411 

~421 

[431 

[441 

t451 

[461 

1471 

[481 

K. Keahey, P. Beckman, and J. Ahrens. Ligature: Compo- 
nent architecture for high-performance applications. Inter- 
national Journal of High-Performance and Scientific Appli- 
cations, to appear. 
K. Keahey and D. Gannon. PARDIS: A Parallel Approach 
to CORBA. In Proceedings of the 6th IEEE International 
Symposium on High Perj?ormance Distributed Computation, 
pages 31-39, August 1997. 
S. Kohn and B. Smolinski. Component interoperability ar- 
chitecture: A proposal to the common component architec- 
ture forum. In preparation, 1999. 
MPI: A message-passing interface standard. International J. 
Supercomputing Applications, 8(3/4), 1994. 
OMG. The Common Object Request Broker: Architec- 
ture and SpecQication. Revision 2.0. OMG Document, June 
1995. 
OMG. Corba Components. Revision 3.0. OMG TC Docu- 
ment orbos/99-02-05, March 1999. 
P. J. O’Rourke and M. S. Sahota. A variable explicit/implicit 
numerical method for calculating advection on unstructured 
meshes. J. Camp. Phys., 143:312-345, 1998. 
W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, 
and L. E. Sugiyama. Plasma simulation studies using mul- 
tilevel physics models. Physics of Plasmas, 6:1796-1803, 
1999. 
S. Parker, D. Weinstein, and C. Johnson. The SCIRun com- 
putational steering software system. In E. Arge, A. Bruaset, 
and H. Langtangen, editors, Modern Software Tools in Sci- 

em@ Computing, pages l-44. Birkhauser Press, 1997. 
R. Sessions. COM and DCOM: Microsoft’s Vision for Dis- 
tributed Objects. John Wiley & Sons, 1997. 
J. Shirley, W. Hu, and D. Magid. Guide to Writing DCE 
Applications. O’Reilly & Associates, Inc., Sebastopol, CA, 
1994. 
C. Szyperski. Component Software: Beyond Object- 
Oriented Programming. ACM Press, New York, 1998. 
G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, J. Bres- 
nahan, C. Kesselman, M. Thiebaux, M. L. Rivers, S. Wang, 
B. Tieman, and I. McNulty. Real-time analysis, visualiza- 
tion, and steering of microtomography experiments at pho- 
ton sources. In Proceedings of the Ninth SIAM Confer- 
ence on Parallel Processing for Scientific Computing, March 
1999. 



Language Interoperability for High-Performance 
Parallel Scientific Components* 

Brent Smolinski, Scott Kohn, Noah Elliott, and Nathan Dykman 

Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

Livermore, CA 94551 

Abstract. Component technologies offer a promising approach for man- 
aging the increasing complexity and interdisciplinary nature of high- 
performance scientific applications. Language interoperability provides 
the flexibility required by component architectures. In this paper, we 
present an approach to language interoperability for high-performance 
parallel components. Based on Interface Definition Language (IDL) tech- 
niques, we have developed a Scientific IDL (SIDL) that focuses on the 
abstractions and performance requirements of the scientific domain. We 
have developed a SIDL compiler and the associated run-time support for 
reference counting, reflection, object management, and basic exception 
handling. The SIDL approach has been validated for a scientific linear 
solver library. Initial timing results indicate that the performance over- 
head is minimal (less than l%), whereas the savings in development time 
for interoperable software libraries can be substantial. 

1 Introduction 

The scientific computing community is beginning to adopt component technolo- 
gies and associated programming methodologies [l, 2, 10, 171 to manage the 
complexity of scientific code and facilitate code sharing and reuse. Components 
require language interoperability to isolate component implementation details 
from applications. This ensures that applications and components can be cre- 
ated and evolve separately. With the proliferation of languages used for numerical 
simulation-such as C, C++, Fortran 90, Fortran 77, Java, and Python-the 
lack of seamless language interoperability negatively impacts the reusability of 
scientific codes. 

Providing interoperability among the many languages used in scientific com- 
puting is a difficult problem for both component and library developers. Without 
language interoperability, application developers must use only the same lan- 
guage as the components, even though better languages may exist. If language 

* Work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract W-7405-Eng-48. This work has been 
funded by LDRD grant 99-ERD-078. Available as LLNL techinical report UCRL- 
JC-134260. 



interoperability is desired, component developers and users are often forced to 
write “glue code” that mediates data representations and calling mechanisms 
between languages. However, this approach is labor-intensive and in many cases 
does not provide seamless language integration across the various calling lan- 
guages. Both approaches couple the components and applications too tightly, 
restricting component reuse and flexibility. 

1.1 Language Interoperability Design Considerations 

The design considerations associated with language interoperability for high- 
performance scientific computing differ from those of the business sector, which 
is supported by industry efforts such as COM [7, 151 and CORBA [16]. The 
Common Component Architecture (CCA) [l], Equation Solver Interface [9] and 
other scientific computing working groups require support for complex numbers, 
Fortran-style dynamic multidimensional arrays, object-oriented semantics with 
multiple inheritance and method overriding, and very efficient function invo- 
cation for components living in the same address space. The CCA consortium 
is developing component technologies appropriate for high-performance paral- 
lel scientific computing. The ES1 is developing standards for linear solvers and 
associated preconditioners based on component approaches to increase the in- 
teroperability of numerical software developed by different development teams. 

1.2 Related Interoperability Approaches 

Several language interoperability packages have been developed that automati- 
cally generate glue code to support calls among a small set of targeted languages. 
For example, the SWIG package [3] reads C and C++ header files and gener- 
ates the mediating code that allows these routines to be called from scripting 
languages such as Python. Such approaches typically introduce an asymmetric 
relationship between the scripting language and the compiled language. Calls 
from the scripting language to the compiled language are straight-forward, but 
calls from the compiled language to the scripting language are difficult or are 
not supported. 

Foreign invocation libraries have been used to manage interoperability among 
targeted languages. For instance, the Java Native Interface [13] defines a set, of 
library routines that enables Java code to interoperate with libraries written in 
C and C++. 

Such interoperability approaches support language interoperability among 
only a limited set of languages, and they do not support a single, universal 
mechanism that works with all languages. In the worst case, interoperability 
among N languages could require O(N2) different approaches. Component ar- 
chitectures require a more general approach, which we describe in the following 
section. 



1.3 Interoperability Through an IDL Approach 

One interoperability mechanism used successfully by the distributed systems and 
components community [12, 15, 16, 181 is based on the concept of an Interface 
Definition Language or IDL. The IDL is a new “language” that describes the 
calling interfaces to software packages written in standard programming lan- 
guages such as C, Fortran, or Java. Given an IDL description of the interface, 
IDL compilers automatically generate the glue code necessary to call that soft- 
ware component from other programming languages. The advantage of an IDL 
approach over other approaches is that it provides a single, uniform mechanism 
for interoperability among a variety of languages. 

Current IDL implementations are not sufficient for specifying interfaces to 
high-performance scientific components. First, standard IDLs such as those de- 
fined by CORBA and CON1 are targeted towards business objects and do not in- 
clude basic scientific computing data types such as complex numbers or dynamic 
multidimensional arrays. Second, approaches focused on distributed objects do 
not generally provide support for high-performance, same address space function 
calls between different languages. Our performance goal is to reduce the overhead 
of single address space function calls to about that of a C++ virtual function 
invocation. Third, many IDLs do not support multiple inheritance or have a lim- 
ited object model. For example, COM does not support multiple inheritance and 
supports implementation inheritance only through composition or aggregation, 
which can be computationally expensive and difficult to implement. CORBA 
does not support method overriding, which is required for polymorphism. 

We have adopted an IDL approach for handling language interoperability in 
a scientific computing environment. We have developed a Scientific IDL called 
SIDL [6, 141 as well as a run-time environment that implements bindings to SIDL 
and provides the library support necessary for a scientific component architec- 
ture. Currently SIDL supports bindings to C and Fortran 77, although others 
are under development. Preliminary experiments with a scientific solver library 
have shown that SIDL is expressive enough for scientific computing and that 
language interoperability is possible with little measurable run-time overheads. 

1.4 Paper Organization 

This paper is organized as follows. Section 2 introduces SIDL features that are 
necessary for high-performance parallel computing. Section 3 describes the bind- 
ings of SIDL to C and Fortran 77, as well as the run-time environment, which 
includes a SIDL compiler and library support. Section 4 details the process of 
applying the SIDL interoperability approach to a scientific software library and 
provides parallel performance results for both C and Fortran. Finally, we con- 
clude in Section 5 with an analysis of the lessons learned and the identification 
of future research issues. 



2 Scientific Interface Definition Language 

A scientific IDL must be sufficiently expressive to represent the abstractions 
and data types common in scientific computing, such as dynamic multidimen- 
sional arrays and complex numbers. Polymorphism-required by some advanced 
numerical libraries [9]-requires an IDL with an object model that supports mul- 
tiple inheritance and method overriding. The IDL should also provide robust and 
efficient cross-language error handling mechanisms. 

Unfortunately, no current IDLs support all these capabilities. Most IDLs 
have been designed for operating systems [7, 81 or for distributed client-server 
computing in the business domain [la, 16, 181 and not for scientific computing. 

The design of our Scientific IDL borrows many ideas from the CORBA 
IDL [16] and the Java programming language [II]. SIDL supports an object 
model similar to Java with separate interfaces and classes, scientific data types 
such as multidimensional arrays, and an error handling mechanism similar to 
Java and CORBA. SIDL provides reflection capabilities that are similar to Java. 

The following sections describe SIDL in more detail. An example of SIDL for 
a scientific preconditioning solver library is given in Figure 3 of Section 4. 

2.1 Scientific Data Types 

In addition to standard data types such as int, char, bool, string, and double, 
SIDL supports dcomplex, fcomplex, and array. An fcomplex is a complex number 
of type float, and a dcomplex is a complex number of type double. A SIDL array 

is a multidimensional array contiguous in memory, similar to the Fortran-style 
arrays commonly used in scientific computing. The array type has both a type, 
such as int or double, and a dimension, currently between one through four, in- 
clusive. In comparison, CORBA supports only statically-sized multidimensional 
arrays and single-dimension sequences, and COM supports only pointer-based, 
ragged multidimensional arrays. 

2.2 SIDL Object Model 

The SIDL object model is similar to that of the Java programming language. 
We chose the Java object model for SIDL because it provides a simple model 
for multiple inheritance. SIDL supports both interfaces and classes. A SIDL class 
may inherit multiple interfaces but only one class implementation. This approach 
solves the ambiguity problems associated with multiple implementation inheri- 
tance in languages such as C++. 

SIDL provides a new set of interface method declarations. These declara- 
tions provide optimization opportunities and increase the expressiveness of the 
IDL. Like Java, class methods may be declared abstract, final, or static. An 
abstract method is purely declarative and provides no implementation; an im- 
plementation must be provided by a child class. A final method is one that 
cannot be overridden by child classes. The final construct enables optimizations 
in the run-time system that eliminate potential dereferences to an overriding 



method. As in C++ or Java, static methods are associated with a class, not a 
class instance, and therefore may be invoked without an object. The static con- 
struct simplifies developing SIDL interfaces to legacy libraries that were written 
without object-oriented semantics. 

2.3 Scoping and Exception Handling 

Every class and interface belongs to a particular package scope. Packages in SIDL 
are similar to namespaces in Cf4 and packages in Java. The package construct 
is used to create nested SIDL namespaces. Packages help prevent global naming 
collisions of classes and interfaces that are developed by different code teams. 

Component architectures require robust error handling mechanisms that op- 
erate across language barriers. We have designed an error reporting mechanism 
similar to Java. All exceptions in SIDL are objects that inherit from a par- 
ticular library interface called Throwable. Error objects support more complex 
error reporting than what is possible with simple integer error return codes. Er- 
ror conditions are indicated through an environment variable that is similar to 
CORBA. 

2.4 Reflection 

Reflection is the mechanism through which a description of object methods and 
method arguments can be determined at run-time. Reflection is an critical ca- 
pability for component architectures, as it allows applications to discover, query, 
and execute methods at run-time. This allows applications to create and use 
components based on run-time information, and to view interface information 
for dynamically loaded components that is often unavailable at compile-time. 

The SIDL run-time library will support a reflection mechanism that is based 
on the design of the Java library classes in j ava . lang and j ava . lang . ref lect 
The SIDL compiler automatically generates reflection information for every in- 
terface and class based on its IDL description. The run-time library will support 
queries on classes and interfaces that allow methods to be discovered and invoked 
at run-time. 

3 Bindings and Implementation 

SIDL defines component interfaces in a language-independent manner. For each 
programming language, we must define language mappings that map constructs 
in SIDL onto that target language. In this section, we describe the mappings of 
SIDL to C and Fortran 77, as well as the required library support for the run- 
time environment. We discuss only the more challenging aspects of the mappings 
and implementation; a complete specification can be found elsewhere [14]. 



3.1 Mappings to C and Fortran 77 

Because SIDL is based on CORBA IDL, we were able to use the CORBA specifi- 
cation [16] as a guide in mapping many of the SIDL constructs into C. Fortran 77 
mappings closely followed the C mappings, whith exceptions as described be- 
low. The mappings for complex numbers and multidimensional arrays to C and 
Fortran 77, which are not part of the CORBA IDL, where relatively straight- 
forward. 

Mapping SIDL classes and interfaces in C and Fortran 77 presented some 
interesting challenges, since neither language supports object-oriented features. 
However, the IDL approach allows object-oriented concepts to be mapped onto 
non-object-oriented languages. For C, SIDL classes and interfaces are mapped 
to opaque structure pointers that encapsulate private data members, method 
invocation tables, and other implementation details. For Fortran 77, classes 
and interfaces are mapped to integers that are used as handles. The run-time 
environment manages object information and automatically translates between 
the Fortran integer representation and the actual object reference. Methods on 
SIDL objects are invoked using a standard C or Fortran 77 function call with 
the object reference as the first parameter. Figure 3 of Section 4 illustrates these 
conventions for a scientific linear solver library. 

3.2 Implementing the SIDL Run-Time Environment 

Much of the effort in developing the SIDL compiler and run-time system was in 
implementing the object model, namely: virtual function tables, object lookup 
table for mapping to and from Fortran integer handles, reference counting, 
dynamic type casting, exception handling mechanism, and reflection capabilities. 
The run-time library support is implemented in C and the compiler is written in 
Java. The “glue” code generated from the compiler is in C. 

All object support is distributed between the glue code and the run-time li- 
brary. The glue code contains the implementation of the object mapping, includ- 
ing the virtual function lookup table (similar to a C++ virtual function table), 
constructors, destructors, and support for dynamic type casting. The run-time 
library contains support for reference counting, object lookup mechanisms nec- 
essary for Fortran objects, and exception handling mechanisms. The reflection 
capability is supported through both the glue code and the run-time library. 

One of the goals of the SIDL run-time environment is to provide extremely 
fast function calls between components living in the same memory space. For 
C to C calls, our current implementation requires one table look-up (to support 
virtual functions) and one additional function call. Calls between C and another 
language add the overhead of an additional function call, and calls between 
two non-C languages requires yet another call. These additional function calls 
are needed to isolate language-specific linker names. Where possible, the SIDL 
compiler takes advantage of the static and final qualifiers in SIDL by eliminating 
a function table lookup to functions for those types. 



4 Applying SIDL to a Scientific Library 

As a test case, we used the SIDL tools to create new interfaces for a semicours- 
ening mulitigrid (SMG) solver [4], a preconditioner that is part of the hyplpre 
linear solver library [5]. hypre is a library of parallel solvers for large, sparse 
linear systems being developed at Lawrence Livermore National Laboratory’s 
Center for Applied Scientific Computing. The library currently consists of over 
30,000 lines of C code, and it has 94 encapsulated user-interface functions. To 
test our approach, we created a SIDL interface and and created both C and 
Fortran 77library wrappers with SIDLWe ran similar test drivers for the two 
SIDL generated wrappers and the original C interface already provided by the 
library, and compared the results from all three runs. 

library user implementation 

Fig. 1. Generating “glue” code for the hypre library using the SIDL tools. 

Wrapping hypre using SIDL proceeded in three steps. First, the existing hypre 
interface was written in SIDL by two people, one who was familiar with SIDL 
and another who was familiar with the hypre library. The second step was to 
run the SIDL compiler with the interface description as input to automatically 
generate the glue code for each class (see Figure 1). Since the names created 
by SIDL compiler are slightly different from those expected by the rest of the 
original hypre library, the library had to be slightly modified to match the new 
names of the SMG interfaces. This step is not required if SIDL conventions are 
used and only has to be done once. Once the function calls were manually added 
for the C language bindings, the Fortran interface was created automatically by 
running the compiler once more with options for Fortran. The final step was to 
compile and link the drivers with the skeletons, stubs, and the hypre library. 

We rewrote an existing SMG test driver to test the performance of the new 
interfaces. The driver uses SMG to solve Laplace’s equation on a 3-D rectangular 
domain with a 7-point stencil. First, all calls in the existing C driver to the hypre 
library were replaced with the new C interfaces created by SIDL. Then we wrote 
a new Fortran driver for the same problem that calls the same hypre functions 



package hypre c 
class stencil C 

stencil NewStencilCin int dim, in int size); 
int SetStencilElementcin int index, inout array<int> offset); 

1; 
class grid C 

grid NewGrid(in mpi-corn corn, in int dimension); 
int SetGridExtents(inout array<int> lower, inout array<int> upper); 

li 
class vector C 

vector NewVector(in mpi-corn corn, in grid g, in stencil 
int SetVectorBoxValues(inout array<int> lower, 

inout array<int> upper, inout array<double> values) 
. . . 

s); 

figure */ ); class matrix { /* matrix member functions omitted in this 
class smg-solver C 

int Setup(inout matrix A, inout vector b, inout vector xl ; 
int Solve(inout matrix A, inout vector b, inout vector x); 

Fig. 2. Portions of the hypre interface specification written in SIDL. 

via the new Fortran interface. Figure 2 shows a portion of the hypre interface 
written in SIDL, and Figure 3 shows portions of both the C and Fortran drivers 
that call the hypre library using the automatically generated interfaces. 

Both test drivers produced the same numerical results. We compared the 
efficiency of the new C and Fortran drivers to the original C driver. The drivers 
that used SIDL solved large problems-both sequentially and in parallel on 216 
processors-with no noticeable effect (less than 1%) on the speed of execution. 
The overhead added by SIDL is negligible when compared to the overhead of the 
numerical kernels in the library. 

This entire process required less than an afternoon to generate the SIDL 
interface, edit the skeleton code, and generate C and Fortran stub code. To put 
this in perspective, there was an effort by the hypre team to manually generate 
a Fortran interface for hypre that required over one person-week of effort. This 
work was targeted at the Solaris platform. Porting this hand-generated Fortran 
interface to another platform required a substantial re-write of the interface due 
to differences in Fortran name representation. Such platform dependencies are 
managed automatically by the SIDL tools. 



C Test Code Fortran 77 Test Code 

hypre-vector b, x; integer b, x 
hypre-matrix A; integer A 
hypre-smg-solver solver; integer solver 
hypre-stencil s; integer s 

b = hypre_vector_NewVector(com, grid, s); b = hypre_vector_NewVector(com, grid, s) 

x = hypre_vector_NewVector(com, grid, s); x = hypre_vector_NewVector(com, grid, s) 
. . 

A = hypre_matrix_NeuMatrix(com, grid, s); A = hypre_matrix_NewMatrix(com, grid, s) 
, 

solver = hypre-smg-solver-new0; solver = hypre_smg_solver_neuO 
hypre_smg_solver_SetMaxItr(solver, 10); hypre_smg_solver_SetMaxItr(solvsr, IO) 
hypre_smg_solver_Solve(solver, %A, &b, &Ix); hypre_smg_solver_Solve(solver, A, b, x) 
hypre_smg_solver_Finalize(solver); hypre_smg_solver_Finalize(solve+) 

Fig. 3. Sample test code calling hypre interfaces for C and Fortran 77 generated auto- 
matically using the SIDL tools. 

5 Lessons Learned and Future Work 

We have presented SIDL, a scientific interface definition language, a.nd a run- 
time that meets the requirements requirements for scientific computing, SIDL 
borrows heavily from the CORBA IDL and Java programming language, while 
adding features necessary for scientific computing. SIDL seems to capture the 
abstractions necessary for scientific computing, as well as new features that a 
run-time can use to perform optimizations, which are not present in current IDL 
standards. 

The SIDL run-time also provides fast same address space calls, which is im- 
portant for effective scientific computation. A comparison using the hyplpre library 
showed that SIDL added only one to two percent overhead compared to the na- 
tive interfaces. This is neglible when compared to the great savings in developer 
costs and flexibility. The SIDL run-time allowed the creation of a Fortran 77 
interface in the hyplpre library in a fifth of the time required to create a similar 
interface by hand. 

In the future we will develop bindings for C++, Java, Fortran 90, and Python 
and implement those bindings. Fortran 90 is challenging since Fortran 90 call- 
ing conventions vary widely from compiler to compiler. We will also continue our 
collaboration efforts with the CCA and ES1 working groups. Other ES1 specifi- 
cations will require more expressability from SIDL than the hgplpre interface re- 
quires. Features may also need to be added to SIDL to support the specification 
of high-performance scientific components (e.g. CCA compliant components). 

References 

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, 
and B. Smolinski, Toward a common component architecture for high performance 



scientific computing, 1999. 
2. S. Balay, B. Gropp, L. C. McInnes, and B. Smith, A microkernel design for 

component-based numerical software systems, in Proceedings of the First Work- 
shop on Object Oriented Methods for Inter-operable Scientific and Engineering 
Computing, 1998. 

3. D. M. Beazley and P. S. Lomdahl, Buildingfiexible large-scale scientific computing 
applications with scripting languages, in The 8th SIAM Conference on Parallel 
Processing for Scientific Computing, Minneapolis, MN, March 1997. 

4. P. Brown, R. Falgout, and J. Jones, Semicoarsening multigrid on distributed mem- 
ory machines, in SIAM Journal on Scientific Computing special issue on the Fifth 
Copper Mountain Conference on Iterative Methods, 1999. 

5. E. Chow, A. Cleary, and R. Falgout, Design of the hypre preconditioner library, in 
Proceedings of the First Workshop on Object Oriented Methods for Inter-operable 
Scientific and Engineering Computing, 1998. 

6. A. Cleary, S. Kohn, S. Smith, and B. Smolinski, Language interoperability mecha- 
nisms for high-performance applications, in Proceedings of the First Workshop on 
Object Oriented Methods for Inter-operable Scientific and Engineering Computing, 
1998. 

7. G. Eddon and H. Eddon, Inside Distributed COM, Microsoft Press, Redmond, WA, 
1998. 

8. E. Eide, J. Lepreau, and J. L. Simister, Flexible and optimized IDL compilation 
for distributed applications, in Proceedings of the Fourth Workshop on Languages, 
Compilers, and Run-time Systems for Scalable Computers, 1998. 

9. Equations Solver Interface Forum. See http: //.z. ca. sandia. gov/esi/. 
10. D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman, 

F. Breg, S. Diwan, and M. Govindaraju, Component architectures for distributed 
scientific problem solving, (19%). 

11. J. Gosling and K. Arnold, The Java Programming Language, Addison-Wesley Pub- 
lishing Company, Inc., Menlo Park, CA, 1996. 

12. B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi, ILU Reference Manual, Xe- 
rox Corporation, November 1997. See ftp://ftp.parc.xerox.com/pub/ilu/ 
ilu.html. 

13. JAVASOFT, Java Native Interface Specification, May 1997. 
14. S. Kohn and B. Smolinski, Component interoperability architecture: A proposal to 

the common component architecture forum. in preperation, 1999. 
15. MICROSOFT CORPORATION, Component Ob,ject Model Specification (Version 0.9), 

October1995. Seehttp://www.microsoft.com/oledev/olecom/title.html. 
16. OBJECT MANAGEMENT GROUP, The Common Object Request Broker: Architecture 

and Specification, February 1998. Available at http: //www. omg . org/corba. 
17. S. Parker, D. Beazley, and C. Johnson, The SCIRun Computational Steering Soft- 

ware System, E. Arge, A.M. Bruaset, and H.P. Langtangen (Eds.), Modern Soft- 
ware Tools in Scientific Computing, Birkhauser Press, 1997. 

18. J. Shirley, W. Hu, and D. Magid, Guide to Writing DCE Applications, O’Reilly & 
Associates, Inc., Sebastopol, CA, 1994. 

This article was processed using the Lw macro package with LLNCS style 


